1 Terrestrial sources as the primary delivery mechanism of

2 mercury to the oceans across the Toarcian Oceanic Anoxic

- 3 Event (Early Jurassic)
- 4
- 5 T.R. Them II^{a,*}, C.H. Jagoe^b, A.H. Caruthers^c, B.C. Gill^d, S.E. Grasby^e, D.R. Gröcke^f, R. Yin^g, 6 and J.D. Owens^{h,i}
- 7
- ^aDepartment of Geology and Environmental Geosciences, College of Charleston, Charleston, SC
 29424, USA
- ¹⁰ ^bSchool of the Environment, Florida A&M University, Tallahassee, FL 32307, USA.
- ¹¹ ^cDepartment of Geosciences, Western Michigan University, Kalamazoo, MI 49006, USA.
- ¹² ^dDepartment of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg,
- 13 VA 24061, USA.
- ¹⁴ ^eGeological Survey of Canada, Natural Resources Canada, Calgary, Alberta T2L 2A7, Canada.
- ¹⁵ ^fDepartment of Earth Sciences, Durham University, Durham, DH1 3LE, UK.
- ^gState Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese
- 17 Academy of Sciences, Guiyang 550002, China.
- ¹⁸ ^hDepartment of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, FL
- 19 32306, USA.
- ²⁰ ⁱNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310,
- 21 USA.
- 22
- 23 * Corresponding author: themtr@cofc.edu (T.R. Them II)
- 24
- 25
- 26
- 20
- 27
- 28
- 20
- 29
- 30
- 31
- 32
- 33

34 ABSTRACT

This study evaluates the utility of sedimentary mercury (Hg) contents as a proxy for fingerprinting ancient massive volcanism, which is often associated with biogeochemical perturbations. Herein we present new Hg geochemical data from anoxic marine basins across the Toarcian Oceanic Anoxic Event (T-OAE; ~183 Ma) as a test of the complex Hg cycle. The T-OAE was likely initiated by the main eruptive phase of the Karoo-Ferrar large igneous province, which caused a subsequent cascade of environmental perturbations and resulting mass extinction. At present the leading interpretation of sedimentary Hg anomalies has been volcanogenic outgassing as the primary source. Our study and compilation results suggest, however, that Hg/TOC anomalies were restricted to shallow-water, and/or proximal environments, while deep-water, more distal depositional settings document no significant Hg-related anomalies. Furthermore, asynchronous stratigraphic deviations in Hg enrichments favor terrestrially sourced materials and local redox variability, rather than direct volcanogenic emissions, as a primary control mechanism. Additionally, Hg isotope signatures from our only study site documenting an Hg anomaly are also consistent with a terrestrial Hg origin during the T-OAE. Therefore, our results suggest that Hg anomalies in the geological record need to be re-evaluated as a "smoking gun" proxy that only infers volcanogenic inputs.

52 Keywords: Toarcian Oceanic Anoxic Event; carbon isotope excursion; Hg anomalies; Hg

- 53 isotopes; large igneous provinces; mass extinction

65 1. Introduction

66 Mercury (Hg) enrichments have recently been identified as a novel proxy to track past events of large-scale volcanism (e.g., Sanei et al., 2012). In the geologic record, the 67 68 emplacements of large igneous provinces (LIPs) are hypothesized as the lynchpin behind many 69 first- and second-order mass extinction events (e.g., Courtillot, 1999) and other episodes of 70 environmental perturbation. It is thought that volcanogenic outgassing during LIP emplacement 71 catalyzes a cascade of environmental and biogeochemical feedbacks, which have a dramatic 72 impact on the biosphere (e.g., Courtillot, 1999; Bond and Wignall, 2014; Bond and Grasby, 73 2017). One of the fundamental issues facing the correlation of sedimentological, geochemical, 74 and biological records is unequivocally linking the timing, magnitude, and effects of LIP 75 activity, because converging geochemical processes can often yield non-unique signals in the 76 sedimentary record.

77 Numerous studies have applied the Hg proxy to Phanerozoic extinctions and oceanic 78 anoxic events (OAEs) associated with documented or hypothesized LIP emplacements, and have 79 noted contemporaneous Hg concentration ([Hg]) anomalies and/or increases relative to total 80 organic carbon (Hg/TOC; e.g., Sanei et al., 2012, Percival et al., 2015; Thibodeau et al., 2016; 81 Grasby et al., 2017; Scaife et al., 2017; Wang et al., 2018; Fantasia et al., 2018; see SI for a list 82 of all ancient Phanerozoic Hg anomalies linked to volcanic activity). The strong affinity of Hg 83 with organic matter (e.g., Ravichandran, 2004) makes it necessary to report Hg/TOC values 84 when identifying Hg anomalies, a standard practice when documenting anthropogenic 85 enrichments in modern sediments (e.g., Fitzgerald et al., 2007). These studies have concluded 86 that LIP injections of CO₂. CH₄, or SO_x into the atmosphere caused the planet to warm and/or 87 cool, depending on the timescale, which then affected the biosphere through environmental and

biogeochemical feedbacks (e.g., Courtillot, 1999; Pálfy and Smith, 2000). These suggested
feedbacks may represent extinction mechanisms, so understanding the link between LIPs and
biological evolution remains critical to resolving the relationship between global environmental
change and life.

92 The Early Jurassic Toarcian OAE (T-OAE; ~183 Ma) is a well-documented, transient 93 climate event that was potentially triggered by the initial emplacement of the Karoo-Ferrar LIP, 94 and resulted in global-scale environmental change, culminating in marine mass extinction/s. The 95 T-OAE is characterized by a globally synchronous negative carbon isotope excursion (N-CIE) 96 that represents a major change in the carbon cycle (e.g., Hesselbo et al., 2000; Izumi et al., 2012; 97 Them et al., 2017a; c.f. Them et al., 2018). Other paleoenvironmental changes associated with 98 the T-OAE are an acceleration of the global hydrological cycle and rates of continental 99 weathering (e.g., Percival et al., 2016; Them et al., 2017b; Izumi et al., 2018), increased biomass 100 burning as a result of wildfires (e.g., Baker et al., 2017), carbonate platform demise (e.g., Trecalli 101 et al., 2012; Han et al., 2018), global oceanic deoxygenation (e.g., Them et al., 2018), 102 widespread pyrite burial due to expansion of euxinic (anoxic and sulfidic) conditions (e.g., Gill 103 et al., 2011), and a multi-phased marine mass extinction interval (e.g., Caruthers et al., 2013).

104 Constraining the timing and magnitude of the influence of the Karoo-Ferrar LIP (e.g. 105 Pálfy and Smith, 2000; Sell et al., 2014) is pivotal to our understanding of the effect of massive 106 volcanic eruptions on environmental changes and biological extinction/turnover during this time. 107 Previously published Pliensbachian-Toarcian Hg datasets show variable Hg enrichments (i.e., 108 enrichment magnitudes and asynchronous stratigraphic enrichment variabilities) during the T-109 OAE interval (e.g., Percival et al., 2015; Fantasia et al., 2018; Fig. 1); these are concurrent, 100 however, with lithological transitions (i.e., carbonates to organic matter-rich shales, mudstones to clay-rich sandstones, or other similar changes). These Hg enrichments are directly linked to
volcanogenic Hg emissions associated with the Karoo-Ferrar LIP (e.g., Percival et al., 2015;
Fantasia et al., 2018), although other lines of evidence show increased LIP production and global
oceanic deoxygenation before the initiation of the classical defined T-OAE interval (e.g., Moulin
et al., 2017; Them et al., 2018).

116

117 **2. Mercury Cycle**

118 Today, Hg is emitted to the atmosphere from several sources including the oceans, 119 biomass burning, rock weathering, soil erosion, volcanism, and anthropogenic activities (Fig. 2). Elemental Hg (Hg⁰) is the dominant form of Hg in the atmosphere. The residence time of 120 atmospheric Hg^0 is 0.5 – 1 yr (e.g., Selin, 2009; Driscoll et al., 2013), which is less than the 121 122 mixing time of the hemispheres (ca. 1-1.5 yr), and therefore it can be globally transported relatively rapidly (e.g., Schuster et al., 2002). Atmospheric Hg⁰ is removed through two 123 124 pathways: [1] transformation to oxidized Hg(II) species, which are particle reactive and soluble, 125 and easily deposited through wet/dry deposition; and [2] direct uptake by vegetation and soils 126 followed by oxidation. Mercury enters the ocean primarily through direct atmospheric deposition 127 and terrestrial riverine runoff (e.g., Holmes et al., 2010; Amos et al., 2014). Mercury in major 128 rivers is particulate-bound, although it becomes decoupled from lithogenic materials after initial 129 deposition (e.g., Zhu et al., 2018); thus, normalizing Hg to lithogenic tracers (i.e., aluminum and 130 titanium; e.g., Scaife et al., 2017; many others) can be problematic. Approximately 25% of riverine-derived Hg might reach the open ocean, with the majority being deposited in shallow 131 132 proximal locations such as estuaries and nearshore ocean margins (e.g., Amos et al., 2014). 133 Atmospheric Hg also contains more soluble Hg species (e.g., particulate bound Hg(II)), which

can be deposited and then re-volatilized to the atmosphere, similar to Hg(0). Importantly, these
processes can recycle initial Hg inputs several times through the environment (e.g., Driscoll et
al., 2013) before it ultimately enters the ocean where it is scavenged by organic-rich particles,
and sinks to the seabed (as reviewed by Fitzgerald and Lamborg, 2014). This results in an
average oceanic/atmospheric residence time – from source to ultimate sink – of ~3 thousand
years (e.g., Selin et al., 2008).

140 While volcanoes are the dominant input to the exogenic Hg cycle on geologic timescales, 141 the cycling of Hg through many intermediate reservoirs (Fig. 2) can make it difficult to identify 142 the primary source(s) of bulk sedimentary Hg (e.g., Driscoll et al., 2013). Enrichments alone 143 (i.e., Hg anomalies relative to pre-anomaly values) have proven to be a tenuous fingerprint for 144 the sources of Hg in the modern, thus several studies have used Hg isotopes. Mercury has seven natural stable isotopes (196Hg, 198Hg, 199Hg, 200Hg, 201Hg, 202Hg, and 204Hg), which can be 145 partitioned via mass-dependent (MDF, reported in δ^{202} Hg) and/or mass-independent (MIF, 146 reported in Δ^{199} Hg) fractionations during its cycling (e.g., Bergquist and Blum, 2007). To date, 147 large variations of Hg isotopic ratios (~10% for δ^{202} Hg and Δ^{199} Hg values) have been reported 148 for natural samples (e.g., Blum et al., 2014). Although δ^{202} Hg has been used as a source tracer in 149 150 many case studies, it needs to be cautioned that MDF is ubiquitous and occurs during all 151 biological reactions (e.g., reduction, methylation, demethylation), abiotic chemical reactions 152 (e.g., chemical reduction, photoreduction, oxidation), and physical processes (e.g., volatilization, 153 evaporation, adsorption, and dissolution), which may lead to ambiguous interpretations 154 (reviewed by Blum et al., 2014).

155 The addition of Δ^{199} Hg signatures greatly increases the usefulness of Hg isotopes because 156 they provide a unique fingerprint of specific pathways. It has been suggested that MDF and MIF

157 signatures can be combined to identify the Hg source(s) in the modern (e.g., Blum et al., 2014) 158 and in the ancient to varying effects (e.g., Thibodeau et al., 2016; Grasby et al., 2017; Gleason et al., 2017; Yin et al., 2017). Plotting Δ^{199} Hg vs. δ^{202} Hg clusters data of unique process(es) 159 together (see Figure 1 in Blum et al., 2014). Although modern Hg isotope studies (e.g., Lefticariu 160 161 et al., 2011; Das et al., 2013; Bessinger, 2015) show that there is an overlap in the isotope 162 composition of natural sources, the MIF signals could be useful in fingerprinting Hg sources (Fig. 163 2). On geologic timescales, it is suggested that Hg was emitted to the surface environment through volcanic and potentially hydrothermal activities, and these sources have shown Δ^{199} Hg 164 values close to zero (Fig. 2). Δ^{199} Hg anomalies have been predominately observed on Earth's 165 166 surface environment such as soils, sediments, and atmospheric and biological samples, and Hg photoreactions are thought to play the foremost role in the generation of Δ^{199} Hg anomalies in 167 natural samples (e.g., Blum et al., 2014). It is these Δ^{199} Hg differences that may be useful to 168 169 distinguish between primary and secondary Hg sources.

170

171 **3. Study sites**

172 Here we investigate the dynamics of the Hg cycle across the T-OAE in two 173 independently constrained anoxic basins from northeastern Panthalassa and the European epeiric 174 seaway (Fig. 1). The first in Alberta, Canada, represents a transect in water depth from proximal 175 (East Tributary) to distal (drill cores 1-35-62-5W6 and 6-32-75-20W6) in the Fernie Formation 176 (Them et al., 2017a, b, 2018). The second represents a semi-restricted locality in the European 177 epeiric sea collected from Dotternhausen Quarry, South German Basin. These regions are ideal 178 localities for testing Hg anomalies, as they both have reducing redox conditions during the study 179 interval (Them et al., 2018). Constraining the local depositional conditions is important to

quantify Hg enrichments, as Hg is associated with TOC contents of the sediment and is also 180 181 redox sensitive (e.g., Ravichandran, 2004; Niessen et al., 2003), which represents the first 182 attempt to do this for the Pliensbachian-Toarcian interval. Additionally, the site with the highest 183 and only Hg/TOC anomaly (East Tributary) was chosen for isotopic analysis to potentially aid in 184 constraining Hg sources as it is the only site suggesting Hg source variability (e.g., Blum et al., 185 2014; Thibodeau et al., 2016, Grasby et al., 2017; Wang et al., 2018). The sites where no 186 Hg/TOC anomalies were identified were not analyzed for Hg isotopic compositions, as they 187 suggest minimal change in the Hg cycle and confirm the null hypothesis (i.e., there is no change 188 in Hg/TOC across the T-OAE).

189

190 **4. Methods**

191 4.1 Mercury Concentrations

192 Splits of samples from previous studies of the Pliensbachian and Toarcian stages of the 193 Early Jurassic (e.g., Them et al., 2017a,b; Gill et al., 2011) were analyzed for Hg mercury 194 concentrations in the School of the Environment at Florida A&M University. Approximately 50-195 100 mg of sample powder was added to a measuring boat and placed into a DMA-80 (Milestone 196 Inc, Shelton, CT) and heated in stages. Volatilized Hg was collected by gold amalgamation 197 before being measured via spectral analysis. All samples contained quantifiable mercury 198 concentrations. Data were calibrated using international reference standards (SRM Spinach 199 1570a, SRM Mussel 2976, BCR-60 Aquatic Plant, and TORT-2 SRM; see Supplementary 200 Information and SI Table 1 for values), which bracketed the full range of mercury concentrations 201 calculated in these geologic samples. TOC values for these samples were previously published 202 (e.g., Them et al., 2017a,b; Dickson et al., 2017). Mercury data collected by this technique delivered the same values as the samples that were chosen for Hg isotopes and calculated usingdifferent chemical processing and analytical instrumentation (see below).

205

206 4.2 Mercury Isotopes (δ^{202} Hg and Δ^{199} Hg)

207 Splits of samples from the East Tributary section of Canada were analyzed for Hg 208 isotopes at the Laboratory of Advanced Environmental Analysis, Hong Kong Polytechnic 209 University. Approximately 0.5 g sample was digested in 5 mL of aqua regia (HCl:HNO₃ = 3:1, 210 v:v) using water bath (95 °C) for 1 hour. Mercury in the digest solutions were diluted to 0.2 to 0.5 ng mL⁻¹, and the acid concentrations were adjusted to 20% (v/v). Mercury and acid matrices 211 212 of the bracketing Hg standard (NIST SRM 3133) were matched to the sample solutions. Digests 213 of standard reference materials (MESS-1, ocean sediment) were prepared, and measured in the 214 same way as the samples. UM-Almadén secondary Hg standard solution containing 0.2, 0.5, and 1.0 ng mL⁻¹ of Hg in 20% (v/v) aqua regia was also measured. No statistical differences in Hg 215 216 isotopic compositions were observed for solutions with different Hg concentrations (see SI Table 217 1), and the results for UM-Almadén and MESS-1 agreed well with previous studies (e.g., Blum 218 et al., 2007; Blum and Bergquist, 2007; Donovan et al., 2013). Uncertainties in the data reported 219 in this study reflect the larger values of either the external precision of the replication of the UM-220 Almadén or the measurement uncertainty of MESS-1. The Hg concentration and isotope data are 221 included in the SI data.

Mercury isotope ratios were measured by a Neptune Plus multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The MC-ICP-MS was equipped with a gasliquid phase separator and an Apex-Q desolvation unit (Elemental Scientific Inc., USA) for Hg and thallium (Tl) introduction, respectively. Briefly, SnCl₂ was continually pumped along with

226 Hg(II) sample solutions and allowed to mix prior to being introduced to a gas/liquid separator, 227 producing gaseous elemental Hg(0). Using the gas/liquid separator, a relatively simple and dry 228 sample stream contain just Ar and Hg(0) was added to the instrument, which minimized any 229 possible matrix effect. It is possible that the wet digestion may cause incomplete reduction of 230 Hg(II) by SnCl₂, which may cause Hg isotope fractionation. However, this is not the case for our samples. Hg concentrations of our samples were monitored using the ²⁰²Hg signals of MC-ICP-231 MS, and the total Hg estimated by 202 Hg signals were 86 – 107% to that measured by the Hg 232 233 analyser at the School of Environment at Florida A&M University (see above). Detailed methods 234 for conducting the MC-ICP-MS analysis were described previously (Geng et al., 2018). The signals for ²⁰²Hg were <0.02 V for acid blanks. The sensitivities of ²⁰²Hg during Hg isotope 235 analysis was 1.4 to 1.7 V per ng mL⁻¹ Hg. Mass dependent fractionation of Hg isotopes is 236 expressed in δ^{202} Hg notation in units of per mil (‰) referenced to the NIST-3133 Hg standard 237 238 (analyzed before and after each sample):

$$\delta^{202} \text{Hg} (\%) = \left[\frac{202}{\text{Hg}} \frac{198}{198} \text{Hg}_{\text{sample}} \right] \left(\frac{202}{198} \frac{198}{198} \text{Hg}_{\text{standard}} - 1 \right] \times 1000 \quad (1)$$

Mass independent fractionation of Hg isotopes is reported in Δ notation (Δ^{xxx} Hg), which describe the difference between the measured δ^{xxx} Hg and the theoretically predicted δ^{xxx} Hg value using the following formula:

243
$$\Delta^{xxx} Hg \approx \delta^{xxx} Hg - \delta^{202} Hg \times \beta$$
(2)

244 where β is equal to 0.2520 for ¹⁹⁹Hg, 0.5024 for ²⁰⁰Hg, and 0.7520 for ²⁰¹Hg (e.g., Blum and 245 Bergquist, 2007).

246

247 **5. Results**

In northeastern Panthalassa, the most proximal shallow-water site (East Tributary section;

249 n = 36) shows an increase in [Hg] from 0.03 to 0.24 mg/kg (or ppm) and Hg/TOC of 0.02 to 0.05 250 ([mg/kg]/TOC), with the highest values coincident with the N-CIE interval (Fig. 3). During the N-CIE, δ^{202} Hg and Δ^{199} Hg values (n = 8) become more negative (~-0.5 to -1 ‰ and ~0.1 to -0.2 251 252 ‰, respectively; Fig. 3). The intermediate water depth site (core 1-35-62-20W5; n = 18), shows 253 an [Hg] increase at the base of the N-CIE from one sample, but lacks a corresponding Hg/TOC 254 anomaly due to simultaneous TOC enrichment (Fig. 3). The distal and deepest-water site (core 6-255 32-78-5W6; n = 17) shows a decrease in [Hg] and Hg/TOC across the N-CIE (Fig. 3). 256 In the European epeiric sea Dotternhausen section (n = 29), a significant increase in [Hg] 257 from ~0.05 to 0.35 mg/kg occurred during the N-CIE, but again lacks a coincident Hg/TOC 258 anomaly as TOC is also enriched (Fig. 4). At this site there are higher Hg/TOC values below the

N-CIE, but these reflect extremely low and variable TOC contents (see SI Appendix) as there areno corresponding Hg enrichments (Fig. 4).

261

262 **6. Discussion**

263 6.1 Evaluating Volcanism as a Direct Driver of Toarcian N-CIE Hg Enrichments

264 Mercury data from the Panthalassa transect show that only the most proximal location 265 (i.e., East Tributary) documents minor Hg enrichments (as compared to some values from 266 Europe) in both [Hg] and Hg/TOC during the N-CIE (Figs. 3, 5, and 6). As Hg/TOC values increase during the N-CIE, there is a decrease in δ^{202} Hg and Δ^{199} Hg (~-0.5 to -1 and ~0.1 to -0.2, 267 268 respectively), which suggests that the source(s) or geochemical process(es) controlling local Hg 269 deposition may have changed during the carbon isotope perturbation. As previously stated, there 270 are currently several known mechanisms controlling Hg cycling. These include: volcanism, 271 biomass burning, increased detrital inputs (rock weathering and soil loss), photoreactions, and/or

272 some combination of the above (Fig. 2). The isotope results from the N-CIE interval are inconsistent with purely volcanic signatures which have Δ^{199} Hg near zero or more positive, and 273 274 therefore, are more suggestive of a trend toward terrestrial sources (e.g., soils, plants, and peat, which have more negative Δ^{199} Hg values but slightly overlap; Fig. 2). Furthermore, the range of 275 δ^{202} Hg and Δ^{199} Hg values, along with the Hg/TOC anomaly, at this location is within the range 276 277 of modern and pre-anthropogenic marine sediments (e.g., Gehrke et al., 2009; Gleason et al., 278 2017 and references within). As such, the Hg in our samples suggests the enrichment mechanism 279 is not sourced from direct volcanic emissions during the N-CIE. However, this result does not 280 rule out terrestrial cycling of previously deposited volcanogenic mercury. The recycling of 281 terrestrial Hg is likely related to climatic feedbacks associated with volcanism that could have 282 resulted in increased wildfires (e.g., Baker et al., 2017) and enhanced riverine loading of soil-283 derived Hg through increased weathering (e.g., Percival et al., 2016; Them et al., 2017b; Izumi et 284 al., 2018). Additionally, at the East Tributary location, the T-OAE N-CIE interval is also 285 associated with the increased deposition of sand-sized grains (e.g., Them et al., 2017a) and 286 higher Al contents (e.g., Them et al., 2017b), which could be due to a local increase in detrital 287 input from an enhanced hydrological cycle (e.g., Izumi et al., 2018). These isotope data are also 288 similar in magnitude with previously published work for other Phanerozoic extinction events that show minor Δ^{199} Hg perturbations (e.g., Grasby et al., 2017; Wang et al., 2018). It must be noted, 289 290 however, that the Hg isotope values of the multiple Hg sources overlap (Fig. 2); thus, caution is 291 needed when interpreting these data alone to identify specific source(s) as continental shelf to 292 nearshore environments likely record an amalgamation of these sources.

The Dotternhausen Quarry Hg/TOC data remain low during the T-OAE, with values only significantly fluctuating below the N-CIE (Fig. 4). The one-point Hg and Hg/TOC increase in the

295 T-OAE interval is intriguing because it may represent an increase in volcanic activity. This 296 sample, however, is associated with elevated pyrite contents and is likely controlled by local Hg 297 cycling (see Supplemental Information). Notably, the fluctuating Hg/TOC values (0.05 to 0.17) 298 prior to the N-CIE are similar in magnitude to several previous studies that attribute such 299 fluctuations to volcanic activity (e.g., Percival et al., 2015; Scaife et al., 2017; Fantasia et al., 300 2018; many others). There is no change in [Hg], however, and therefore we suggest that the 301 observed Hg/TOC values are driven by low and fluctuating TOC (<0.3%), which are also 302 associated with lithologic changes (organic matter-lean carbonate marls from 0 to 2 meters; Fig. 303 4). It is unlikely these Hg/TOC values are driven by local redox variability, as water column 304 redox conditions are predominantly reducing (anoxic) for the investigated intervals at this 305 location (e.g., Them et al., 2018; see Supplementary Information).

306 Diagenetic alteration of the primary Hg and TOC values could be a possible mechanism 307 to explain the lack of Hg enrichment at Dotternhausen; we suggest, however, that it would be 308 unlikely to have caused the observed Hg/TOC record. While the effects of diagenesis on Hg are 309 relatively unknown, it is probable that Hg and TOC would be affected similarly if Hg is truly 310 associated with organic matter, but could be incorporated in new mineral phases after dissolution 311 in pore fluids. If the Hg and TOC are decoupled, however, then loss of TOC through thermal 312 decomposition or other similar processes during burial may result in spurious Hg anomalies, which is more likely in localities with highly variable TOC. This would be the case if Hg did not 313 314 also volatilize at temperatures resulting in thermal decomposition of organic matter. The reverse 315 is also true where loss of Hg through volatilization would result in a muted Hg/TOC signal if 316 there was no organic matter loss during burial and heating. Although possible, there is no 317 evidence to suggest that either of these scenarios resulted in the observed Hg/TOC values.

Alternatively, the observed increases in Hg during the N-CIE interval are potentially associated with changes in the type of organic matter at this location (e.g., Schwark and Frimmel, 2004). Changing organic matter sources (i.e., prokaryotic vs. eukaryotic, marine vs. terrestrial, etc.) and the subsequent effect on Hg sequestration is not constrained for any ancient deposits, and therefore moving forward will be an important parameter to constrain for the validity of the Hg proxy, especially for events with large, widespread climatic and biological perturbations.

Comparable lithologic variability (low TOC to TOC-rich sediments) and ranges of Hg/TOC values (0.14 to 0.4) to those observed at the Dotternhausen Quarry are also observed in a mid-Pleistocene sediment core from the Mediterranean Sea. The Hg and Hg/TOC anomalies are not linked to volcanic activity, but rather local redox variability and low TOC values (~0.25%; e.g., Gehrke et al., 2009; see Fig. 4 and SI Figs. 1 and 2). This suggests that fluctuations of this magnitude are non-unique in the geological record and can be driven by local or regional Hg cycling.

331 All previously reported Toarcian N-CIE Hg/TOC anomalies occur in successions with 332 low and/or variable TOC contents (see Percival et al. (2015) and Fantasia et al. (2018) for these 333 values) and lithological variability (e.g., Percival et al., 2015; Fantasia et al., 2018; Fig. 5). Given 334 this, caution should be used when interpreting Hg data from low TOC settings (i.e., carbonates, 335 low-TOC siliciclastics, etc.) in the geological record (e.g., Grasby et al. (2016) set a lower limit 336 of 0.2%). This was suggested to minimize false positives, and generally this approaches the 337 lower limits of accuracy and precision for TOC measurements and therefore compromises 338 Hg/TOC values.

To better constrain the spatiotemporal record of Hg during the Toarcian N-CIE we have compiled all published Toarcian N-CIE data (e.g., Percival et al., 2015, 2016; Fantasia et al.,

341 2018; this study; Figs. 1 and 5). This new compilation documents two observations: [1] there is a 342 clear proximity relationship to landmasses in sections with Hg anomalies (Fig. 6), and [2] 343 enrichments are asynchronous amongst these localities (Figs. 5 and 6). All of the locations 344 recording Hg enrichments (6 out of 7), highlighted in blue, are in close proximity to landmasses 345 (Mochras Borehole, Bornholm, Peniche, Arroyo Lapa, El Peñon, East Tributary; while Yorkshire 346 is the exception with no Hg/TOC anomaly; Figs. 1, 5, and 6). The deepest and more distal sites 347 have no Hg/TOC anomalies (0 out of 5; Sancerre core, Dotternhausen, Velebit core, and Alberta 348 cores). This suggests that proximity to land may control the Hg content of marine sediments 349 during the N-CIE, which is to be expected if the dominant source of Hg was terrestrial. This 350 seems to contradict the idea that the atmosphere was the dominant, direct source of Hg during 351 the N-CIE, which would be expected to deposit Hg more uniformly throughout the ocean as the 352 atmospheric residence time is close to the mixing time for the hemisphere of emission (Fig. 2).

353 The Hg deposited across a landscape directly from the atmosphere via volcanic eruptions 354 would also be expected to be redistributed/cycled during its transport within the intermediate 355 reservoirs (i.e., plants and soils; Fig. 2) before reaching estuarine and marine sediments. 356 Importantly, these reservoirs would have continued to host and cycle Hg long after its initial 357 deposition (e.g., Driscoll et al., 2013; Amos et al., 2013; Zhu et al., 2018; Fig. 2). The increase of 358 Hg from other terrestrial reservoirs (Fig. 2) could therefore mask any direct volcanic Hg signal. 359 Thus, the pattern of the N-CIE Hg enrichments suggests that the observed Hg anomalies most 360 likely reflect changes in regional riverine input. Furthermore, these enrichments would continue 361 well after the initial driver for climatic and environmental change ceased, potentially causing 362 heterogeneity in the timing of Hg burial and enrichment in the sedimentary record (Amos et al., 363 2014; Fig. 5), an expected outcome of the propagation of some environmental signals to be

364 preserved in marine sedimentary record (e.g., Romans et al., 2016).

365 Increased Hg inputs from rivers (e.g., Amos et al., 2014; Rice et al., 2009) through rock-366 weathering interactions, soil erosion, and/or biomass burning (e.g., Rice et al., 2009; Grasby et 367 al., 2017) would heterogeneously impact Hg inputs in nearshore environments (e.g., Zhu et al., 368 2018). The idea of this process exerting an influence on the Toarcian record is supported by 369 evidence that global climates became both warmer and wetter, with increased continental 370 weathering, during the classical T-OAE interval (e.g., Dera and Donnadieu, 2012; Percival et al., 371 2016; Them et al., 2017b, Izumi et al., 2018). Following this idea, local delivery of Hg through 372 rivers would most directly influence the observed Hg anomalies in proximal locations (e.g., 373 Percival et al., 2015; Fantasia et al., 2018; this study). Furthermore, modern wildfires can 374 increase the supply of Hg to surface waters and the atmosphere (e.g., Burke et al., 2010). Recent 375 research suggests that a significant increase in sedimentary charcoal abundances is associated 376 with the latter half of the N-CIE interval, indicative of increased wildfires (e.g., Baker et al., 377 2017), which could also enhance the input of Hg to the oceans on a local to regional scale (Fig. 378 2). Due to their unique accumulation pathways and preservation of Hg and TOC into sediments, 379 one would not necessarily expect to observe increases in charcoal abundances and Hg or 380 Hg/TOC at the same stratigraphic level. A similar relationship with wildfires was suggested for 381 proximal Hg anomalies at the Latest Permian extinction (e.g., Grasby et al., 2017). The increase 382 in Hg deposition from wildfire activity, the magnitude of which intensifies in a warming world 383 (e.g., Pechony and Shindell, 2010), needs to be considered as a probable Hg source during other 384 intervals of climatic upheaval.

385 The proximal locations that do record N-CIE Hg anomalies are not necessarily 386 inconsistent with the interpretation that LIP volcanism resulted in these enrichments, but there 387 are also asynchronous stratigraphic enrichments/depletions in Hg across the N-CIE interval (e.g., 388 Percival et al., 2015; Fantasia et al., 2018; Fig. 5). It might be expected that an increase in 389 volcanic-derived Hg would result in synchronous stratigraphic Hg enrichments at each location; 390 the observation that Hg enrichments occur at different points in time (using correlations based on 391 carbon isotope stratigraphy and the estimated duration of the 300-500 kyr for the N-CIE interval; 392 e.g. Boulila et al. [2014] and Sell et al. [2014]) in specific locations suggests that local- and 393 regional-scale processes exert a control on the resulting stratigraphic record of Hg (Fig. 5). Thus, 394 the observed asynchronous stratigraphic Hg enrichments (or lack thereof) likely represent the 395 influence of the local/regional cycling of Hg rather than the direct input of Hg from volcanogenic 396 emissions with potential relationships to source-to-sink sedimentary dynamics (e.g., Romans et 397 al., 2016).

398 A striking observation is that there is no Hg/TOC anomaly during the N-CIE interval in 399 the proximal Yorkshire location even though there are small Hg increases (e.g., Percival et al., 400 2015; Figs. 1, 5, and 6). The absence of a Hg/TOC increase at Yorkshire could be due to many 401 reasons: re-cycling and re-emissions of Hg prior to sedimentation, post-depositional release of 402 Hg due to local redox variability (e.g., Zhu et al., 2018), potential changes in organic matter 403 source affecting Hg bioaccumulation, or water column stratification as is observed at this 404 location (e.g., French et al., 2014). It may also be related to an early Toarcian sea level 405 transgression. Regardless, there will be local deviations to the model put forth to explain the 406 observed Hg/TOC anomalies during the N-CIE interval (Figs. 5 and 6), but it provides the most 407 parsimonious explanation to-date.

408 6.2 Estimating the amount of mercury release across the T-OAE

409 It is difficult to quantify the release of mercury from the emplacement of ancient LIPs as 410 there is no equivalent modern analog. A previous estimate by Percival et al. (2015) determined 411 that 150 megatons (Mt) of Hg was released by the K-F LIP based on its size and using the 412 modern Hg/SO₂ emission values from volcanoes. This estimation is much less than the \sim 3,800 413 Mt release of Hg estimated from the emplacement of the Siberian traps across the Permo/Triassic 414 boundary (e.g., Sanei et al., 2012). These calculations, however, are reasonable first attempts 415 given the number of unconstrained parameters from these ancient LIPs. It is also possible, 416 however, to quantify the increased fluxes of Hg to the ocean/atmosphere system from weathering 417 and wildfires using the modern mass balance (Fig. 2). For example, if global weathering rates 418 increased by approximately two-fold across the T-OAE (e.g., Them et al., 2017b) and global 419 wildfire activity increased by three-fold (c.f., Baker et al., 2017), an additional 210 Mt and 120 420 Mt of Hg, respectively, could be released above pre-perturbation steady state from these two 421 sources assuming a 300-kyr perturbation (see Them et al., 2017b and references within) and a 422 modern mass balance (see Fig. 2). Thus, the potential for increased fluxes should be considered 423 for Hg studies that are associated with other intervals of climatic perturbation and widespread environmental destabilization. 424

425 6.3 Mercury isotopes to fingerprint potential sources

As noted above, Hg can be cycled through multiple reservoirs, many of which have isotopic overlap, before it is eventually deposited in the sedimentary record (e.g., Blum et al., 2014; Fig. 2). In near-modern marine sediments, the observed range of paired Hg/TOC and MDF and MIF values (e.g., Blum et al., 2014; Gehrke et al., 2009; Gleason et al., 2017 and references within) is similar to the range observed in the Toarcian record as well as other events in the geologic record (e.g., Blum et al., 2014; Thibodeau et al., 2016; Yin et al., 2017; this study).

Notably, these ancient δ^{202} Hg and Δ^{199} Hg data also show less variation than those identified in a 432 433 modern coastal plain sediment core, where the observed variations were interpreted as a 434 combination of changes in sediment type, grain size, and/or Hg sources (e.g., Das et al., 2013). 435 Although coastal plain biogeochemical processes are not directly analogous to a purely marine 436 system, the potential control of grain size on Hg isotopes should remain ubiquitous in contrasting 437 depositional settings. Furthermore, it has recently been suggested that a negative MIF signal in 438 Mesoproterozoic black shales is indicative of photic zone euxinia (e.g., Zheng et al., 2018), 439 which highlights the need to constrain the local redox when interpreting Hg records. Therefore, it 440 is clear that challenges remain in the use of Hg isotopes to definitively pinpoint the overall global 441 changes in the source(s) of Hg to ancient marine sedimentary rocks if there are significant 442 lithological, grain size, and/or redox variations.

443 Despite these potential complications, compiled Hg isotope values from natural sources of Hg do show negative Δ^{199} Hg values reflecting many terrestrial reservoirs (i.e., plants, soils, 444 rocks), and more positive Δ^{199} Hg values can be sourced from other terrestrial reservoirs (i.e., 445 446 plants, soils, rocks) and volcanoes (e.g., Blum et al. (2014) and references within; Fig. 2). As 447 described earlier for the data from the Toarcian, the trends in Hg/TOC anomalies (Figs. 1, 5, and 448 6) also suggest enhanced terrestrial sourcing of Hg in T-OAE Hg cycle. Moreover, it may be 449 possible to more accurately interpret ancient Hg isotope records in geologic settings where local 450 changes in the sedimentary environment are minimal during the interval studied (e.g., Das et al., 451 2013) as we have attempted to do so with the Toarcian Hg isotope data presented here from the 452 East Tributary section.

453

454 **7.** Conclusions

455 Our new data, when cast in the context of the existing Pliensbachian and Toarcian Hg 456 records, have major implications for the underlying mechanisms driving the Toarcian Hg 457 anomalies. Environmental destabilization during the early Toarcian was most likely driven by 458 multiple feedbacks associated with the emplacement of the Karoo-Ferrar LIP. Our compilation 459 of Hg anomalies along with previous evidence for environmental destabilization during the 460 Toarcian N-CIE suggests the following sequence of events: (1) Main phase emplacement of the 461 Karoo-Ferrar LIP and injection of an unknown quantity of Hg to atmosphere from LIP 462 emplacement; (2) Cycling and redistribution of this Hg in intermediate reservoirs (Fig. 2); (3) 463 Increases in the Hg flux to marine environments from continental weathering, soil erosion, and 464 wildfires; (4) Local changes in water column redox in some locations result in enhanced Hg 465 deposition; (5) LIP emplacement decreases or ceases (or Hg input from volcanism decreases 466 while volcanic activity continues) while enhanced Hg loading in proximal marine environments 467 continues for some time, and biogeochemical cycles and the climate are still perturbed. Events 2 468 -4 may occur geologically simultaneously but potentially independently from one another.

469 The trends from the Pliensbachian-Toarcian Hg compilation illustrate the need to 470 generate similar records from other events in Earth's history. Warming, weathering, wildfires, 471 redox changes, and volcanism can all potentially affect sedimentary Hg enrichments and isotopic 472 signatures. Despite these complexities in the interpretation of the ancient Hg record, we suggest 473 that LIPs may have been the underlying driver of the observed environmental disturbances that 474 resulted in some Hg anomalies and mass extinctions. Volcanism or LIPs may have introduced 475 significant quantities of Hg to the ocean/atmosphere system, but there are many intermediate 476 steps in the cycling of Hg prior to ultimate burial in the sedimentary record, and other larger 477 reservoirs that respond to climatic perturbations may release Hg on similar timescales (Fig. 2).

Therefore, the role of these other mechanisms needs to be considered when interpreting ancient Hg enrichments. To better identify these potential sources and feedbacks in the ancient Hg cycle it is imperative to investigate Hg records from both proximal and distal as well as shallow- and deep-water environments, and from multiple ocean basins with independent evidence for local redox conditions, when possible. Further calibration of the Hg system in modern settings (siliciclastic-dominated, carbonate-dominated, proximal vs distal, fluctuating redox, etc.) will also sharpen our interpretations of the ancient Hg record.

485

486 **References**

- 487 Amos HM, et al. (2014) Global Biogeochemical Implications of Mercury Discharges from
 488 Rivers and Sediment Burial. *Env Sci Tech* 48:9514–9522.
- 489 Amos HM, Jacob DJ, Streets DG, Sunderland EM (2013) Legacy impacts of all-time
- 490 anthropogenic emissions on the global mercury cycle. *Glob Biogeo Cyc* 27:gbc.20040.
- 491 Baker SJ, Hesselbo SP, Lenton TM, Duarte LV, Belcher CM (2017) Charcoal evidence that
- 492 rising atmospheric oxygen terminated Early Jurassic ocean anoxia. *Nat Comm* 8:15018.
- 493 Bergquist BA, Blum JD (2007) Mass-Dependent and -Independent Fractionation of Hg Isotopes
- 494 by Photoreduction in Aquatic Systems. *Science* 318:417–420.
- 495 Bessinger BA (2015) Use of Stable Isotopes of Identify Sources of Mercury in Sediments: A
- 496 Review and Uncertainty Analysis. *Env For* 15:265–280.
- Blum JD, Bergquist BA (2007) Reporting of variations in the natural isotopic composition of
 mercury. *Anal Bioanal Chem* 388:353–359.
- 499 Blum JD, Sherman LS, Johnson MW (2014) Mercury isotopes in earth and environmental
- 500 sciences. Ann. Rev. Earth Plan. Sci. 42:249–269.

- Bond DPG, Grasby SE (2017) On the causes of mass extinctions. *Palaeogeogr Palaeoclimatol Palaeoecol* 478:3–29.
- Bond DPG, Wignall PB (2014) Large igneous provinces and mass extinctions: An update. *Geol Soc Am Sp Pap* 505.
- 505 Boulila S, Galbrun B, Huret E, Hinnov LA, Rouget I, Gardin S, Bartolini A (2014) Astronomical
- calibration of the Toarcian State: Implications for sequence stratigraphy and duration of the
 early Toarcian OAE. *Earth Plan Sci Lett* 386:98–111.
- 508 Burke MP, Hogue TS, Ferreira M, Mendez CB, Navarro B, Lopez S, Jay JA (2010) The effect of
- 509 wildfire on soil mercury concentrations in Southern California watersheds. *Water Air Soil*
- 510 *Poll* 212:369–385.
- 511 Caruthers AH, Smith PL, Gröcke DR (2013) The Pliensbachian-Toarcian (Early Jurassic)
- 512 extinction, a global multi-phased event. *Palaeogeogr Palaeoclimatol Palaeoecol* 386:104–
- 513 118.
- 514 Courtillot V (1999) Evolutionary Catastrophes: The Science of Mass Extinction: Cambridge,
- 515 UK, Cambridge University Press, 237 p.
- 516 Das R, Bizimis M, Wilsin AM (2013) Tracing mercury seawater vs. atmospheric inputs in a
- 517 pristine SE USA salt marsh system: Mercury isotope evidence. *Chem Geol* 336:50–61.
- 518 Dera G, Donnadieu Y (2012) Modeling evidences for global warming, Arctic seawater
- 519 freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event.
- 520 *Paleocean* 27:PA2211.
- 521 Dickson AJ, et al. (2017) Molybdenum-isotope chemostratigraphy and paleoceanography of the
- 522 Toarcian Oceanic Anoxic Event (Early Jurassic). *Paleocean* 32:2016PA003048.
- 523 Donovan M, Blum JD, Yee D, Gehrke GE, Singer MB (2013) An isotopic record of mercury in

- 524 San Francisco Bay sediment. *Chem Geol* 349:87–98.
- 525 Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a Global Pollutant:
 526 Sources, Pathways, and Effects. Env Sci Tech 47:4967–4983.
- 527 Fantasia A, Föllmi KB, Adatte T, Bernárdez E, Spangenberg JE, Mattioli E (2018) The Toarcian
- 528 oceanic anoxic event in southwestern Gondwana: an example from the Andean Basin,
- 529 northern Chile. *J Geol Soc*, doi:10.1144/jgs2018-008.
- Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of
 mercury. *Chem Rev* 107:641–662.
- 532 Fitzgerald WF, Lamborg CH (2014) Geochemistry of Mercury in the Environment, *in* Treatise of
- 533 Geochemistry (2nd Edition) 11:91–129.
- 534 French, KL, Sepúlveda J., Trabucho-Alexandre J., Gröcke DR, Summons RE (2014) Organic
- 535 geochemistry or the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire,
- 536 England. *Earth Plan Sci Lett* 390:116–127.
- 537 Gehrke GE, Blum JD, Meyers PA (2009) The geochemical behavior and isotopic composition of
- Hg in a mid-Pleistocene western Mediterranean sapropel. *Geochim Cosmo Acta* 73:1651–
 1665.
- 540 Geng H, Yin R, Li X (2018) An optimized protocol of high precision measurement of Hg
- 541 isotopic compositions in samples with low concentrations of Hg using MC-ICP-MS. J Anal
- 542 At Spectrom. doi:10.1039/C8JA00255J.
- 543 Gill BC, Lyons TW, Jenkyns HC (2011) A global perturbation to the sulfur cycle during the
- 544 Toarcian Oceanic Anoxic Event. *Earth Plan Sci Lett* 312:484–496.
- 545 Gleason, JD, Blum JD, Moore TC, Polyak L, Jakobsson M, Meyers PA, Biswas A (2017)
- 546 Sources and cycling of mercury in the paleo Arctic Ocean from Hg stable isotope variations

- 547 in Eocene and Quaternary sediments. *Geochim Cosmo Acta* 197:245–262.
- 548 Grasby SE, Beauchamp B, Bond DPG, Wignall PB, Sanei H (2016) Mercury anomalies
- stand associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the
- 550 Smithian/Spathian Extinction) in NW Pangea. *Geol Mag* 153:285–297.
- Grasby SE, et al. (2017) Isotopic signatures of mercury contamination in latest Permian oceans. *Geol* 45:55–58.
- 553 Han Z, Hu X, Kemp DB, Li J (2018) Carbonate-platform response to the Toarcian Oceanic

554 Anoxic Event in the southern hemisphere: Implications for climatic change and biotic

- 555 platform demise. *Earth Plan Sci Lett* 489:59–71.
- 556 Hesselbo SP, Gröcke DR, Jenkyns HC, Bjerrum CJ, Farrimond P, Morgans Bell HS, Green OR,
- (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. *Nature*406:392–395.
- Holmes CD, Jacob DJ, Corbitt ES, Mao J, Yang X, Talbot R, Slemr F (2010) Global atmospheric
- 560 model for mercury including oxidation by bromine atoms. Atmos Chem Phys 10:12037–
- 561 12057.
- 562 Izumi K, Kemp DB, Itamiya S, Inui M (2018) Sedimentary evidence for enhanced hydrological
- 563 cycling in response to rapid carbon release during the early Toarcian oceanic anoxic event.
- 564 *Earth Plan Sci Lett* 481:162–170.
- 565 Izumi K, Miyaji T, Tanabe K (2012) Early Toarcian (Early Jurassic) oceanic anoxic event
- 566 recorded in shelf deposits in the northwestern Panthalassa: Evidence from the
- 567 Nishinakayama Formation in the Toyora area, west Japan. *Palaeogeogr Palaeoclimatol*
- 568 *Palaeoecol* 315-316:100–108.
- 569 Lefticariu L, Blum JD, Gleason JD (2011) Mercury Isotopic Evidence for Multiple Mercury

- 570 Sources in Coal from the Illinois Basin. *Env Sci Tech* 45:1724–1729.
- 571 Moulin M, Courtillot V, Marsh J, Delpech G, Quidelleur X, Gérard M (2017) Eruptive history of
- 572 the Karoo lava flows and their impact on early Jurassic environmental change. *J Geophys*
- 573 *Res Sol Earth* 386:2016JB013354.
- 574 Niessen S, et al. (2003) Influence of sulphur cycle on mercury methylation in estuarine sediment
 575 (Seine estuary, France). *J Phys IV* 107:953–956.
- 576 Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and
 577 the forthcoming century. *Proc Natl Acad Sci* 107:19167–19170.
- 578 Pálfy J, Smith PL (2000) Synchrony between Early Jurassic extinction, oceanic anoxic event,
- and the Karoo-Ferrar flood basalt volcanism. *Geol* 28:747–750.
- 580 Percival LME, et al. (2015) Globally enhanced mercury deposition during the end-Pliensbachian
- 581 extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province. *Earth*
- 582 *Plan Sci Lett* 428:267–280.
- 583 Percival LME, et al. (2016) Osmium isotope evidence for two pulses of increased continental
- 584 weathering linked to Early Jurassic volcanism and climate change. *Geol* 44:759–762.
- 585 Ravichandran M (2004) Interactions between mercury and dissolved organic matter—a review.
 586 *Chemos* 55:319–331.
- 587Rice GE, Senn DB, Shine JP (2009) Relative Importance of Atmospheric and Riverine Mercury
- 588 Sources to the Northern Gulf of Mexico. *Env Sci Tech* 43:415–422.
- 589 Romans BW, Castelltort S, Covault JA, Fildani A, Waslh JP (2016) Environmental signal
- 590 propagation in sedimentary systems across timescales. *Earth-Sci Rev* 153:7–29.
- 591 Sanei H, Grasby SE (2012) Beauchamp B. Latest Permian mercury anomalies. *Geol* 40: 63–66.
- 592 Scaife JD, et al. (2017) Sedimentary mercury enrichments as a marker for Submarine Large

- 593 Igneous Province volcanism? Evidence from the Mid-Cenomanian Event and Oceanic
- 594 Anoxic Event 2 (Late Cretaceous). *Geochem Geophys Geosys* 18:2017GC007153.
- 595 Schuster PF, et al. (2002) Atmospheric mercury deposition during the last 270 years: A glacial
- 596 ice core record of natural and anthropogenic sources. *Env Sci Tech* 36:2303–2310.
- 597 Schuster PF, et al. (2018) Permafrost Stores a Globally Significant Amount of Mercury. Geo *Res*598 *Lett* 47:2017GL075571.
- 599 Schwark L, Frimmel A (2004) Chemostratigraphy of the Posidonia Black Shale, SW-Germany
- 600 II. Assessment of extent and pertistence of photic-zone anoxia using aryl isoprenoid
- 601 distributions. *Chem Geol* 206:231–248.
- 602 Scotese CR (2001) Atlas of Earth History. PALEOMAP Project, Arlington, TX.
- Selin NE (2009) Global Biogeochemical Cycling of Mercury: A Review. *Ann Rev Env Res*34:43–63.
- 605 Selin NE, Jacob DJ, Yantosca RM, Strode S, Jaegle L, Sunderland EM (2008) Global 3-D land-
- 606 ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and
- anthropogenic enrichment factors for deposition. *Glob Biogeo Cyc* 22:GB2011.
- 608 Sell B, et al. (2014) Evaluating the temporal link between the Karoo LIP and climatic-biologic
- events of the Toarcian Stage with high-precision U-Pb geochronology. *Earth Plan Sci Lett*408:48–56.
- 611 Them TR II, et al. (2017a) High-resolution carbon isotope records of the Toarcian Oceanic
- Anoxic Event (Early Jurassic) from North America and implications for the global drivers
 of the Toarcian carbon cycle. *Earth Plan Sci Lett* 459:118–126.
- 614 Them TR, Gill BC, Selby D, Gröcke DR, Friedman RM, Owens JD (2017b) Evidence for rapid
- 615 weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Sci

- 616 *Rep* 7:5003.
- 617 Them TR II, et al. (2018) Thallium isotopes reveal protracted anoxia during the Toarcian (Early
- Jurassic) associated with volcanism, carbon burial, and mass extinction. *Proc Natl Acad Sci*115:6596–6601.
- 620 Thibodeau AM, et al. (2016) Mercury anomalies and the timing of biotic recovery following the
 621 end-Triassic mass extinction. *Nat Comm* 7:11147.
- 622 Trecalli A, Spangenberg J, Adatte T, Föllmi KB, Parente M (2012) Carbonate platform evidence
- 623 of ocean acidification at the onset of the early Toarcian oceanic anoxic event. *Earth Plan Sci*
- 624 *Lett* 357-358:214–225.
- Wang X, et al. (2018) Mercury anomalies across the end Permian mass extinction in South China
 from shallow and deep water depositional environments. *Earth Plan Sci Lett* 496:159–167.
- 627 Yin R, et al. (2017) Anomalous mercury enrichment in Early Cambrian black shales of South
- •

628 China: Mercury isotopes indicate a seawater source. *Chem Geol* 20:159–167.

- 629 Zheng W, Gilleaudeau GJ, Kah LC, Anbar AD (2018) Mercury isotope signatures record photic
- 630 zone euxinia in the Mesoproterozoic ocean. *Proc Natl Acad Sci* doi:
- 631 10.1073/pnas.1721733115.
- 632 Zhu W, et al. (2018) Mercury transformations in resuspended contaminated sediment controlled
- by redox conditions, chemical speciation and sources of organic matter. *Geochim Cosmo*
- 634 *Acta* 220:158–179.

635

- 637 Acknowledgements
- 638 TRT would like to thank the FSU Arts and Sciences Postdoctoral Fellowship for ability to

639	conduct this project. The Alberta outcrop samples were collected under the following permits:
640	#YHTR-2014-16156, #13-058, #14-009, and #15-019. CHJ was supported by Cooperative
641	Agreement NA11SEC4810001 with NOAA's Education Partnership with Minority-Serving
642	Institutions. JDO acknowledges NSF grant OCE 1434785 and NASA Exobiology grant
643	NNX16AJ60G. RY was funded by the Chinese Academy of Sciences through the Hundred
644	Talent Plan. Manuscript preparation was performed at the National High Magnetic Field
645	Laboratory and the College of Charleston. The National High Magnetic Field Laboratory is
646	supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the
647	State of Florida. We would also like to thank editor Derek Vance and Michaël Hermoso and two
648	anonymous reviewers whose suggestions and comments helped to improve this manuscript.
649	
650	Competing Interests
651	The authors declare no competing financial interests.
652	
653	
654	Figure Captions
655	Figure 1. Global paleogeography of the early Toarcian. Dark grey represents landmasses,
656	light blue represents shallow seas, and dark blue represents open oceans. Of the 12 locations
657	analyzed across the T-OAE interval (Percival et al., 2015; Fantasia et al., 2018; this study), there
658	are only 6 that have Hg/TOC anomalies. Note that there are three locations within the Alberta
659	study site. This paleogeographic reconstruction was modified from previous versions (e.g., Them
660	et al., 2017a, 2018; Scotese, 2001).
661	

662 Figure 2. Modern Hg cycle and associated Hg-isotope composition of sources to marine 663 sediments. Mercury is recycled in the environment multiple times before being ultimately 664 sequestered in marine sediments. Values in mass balance from Schuster et al. (2018) and references therein. Note the units for Hg reservoirs (Gg Hg) and fluxes (Gg Hg yr⁻¹). Note that 665 δ^{202} Hg and Δ^{199} Hg values of various sources overlap with one another. Mercury isotope values 666 667 of sources from Blum et al. (2014) and references therein. In the ocean, the sinks of mercury are 668 organic matter and drawdown through sulfide production and preservation. Intermediate sinks 669 that can become sources on short timescales include soils, rocks, and vegetation.

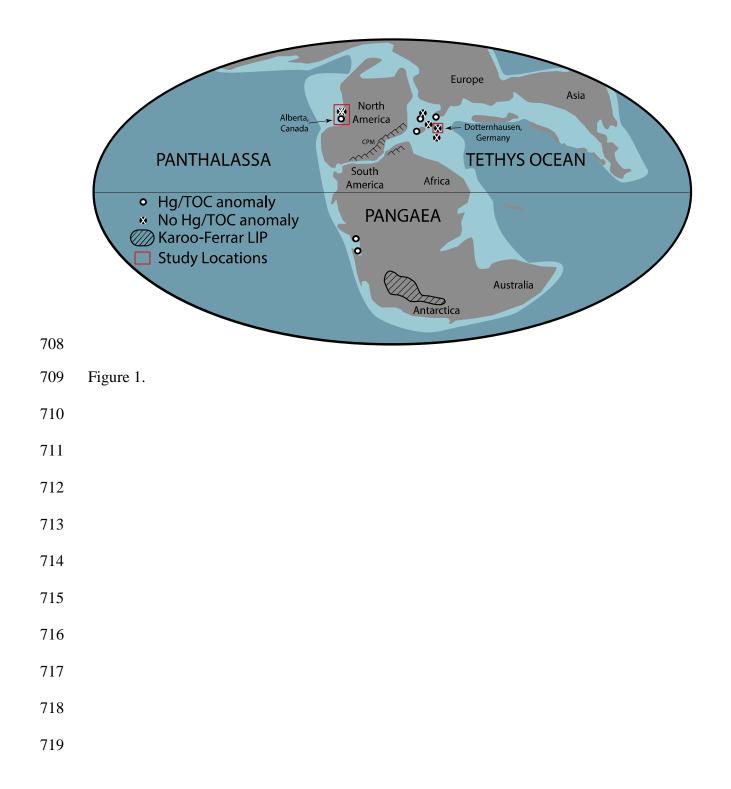
670

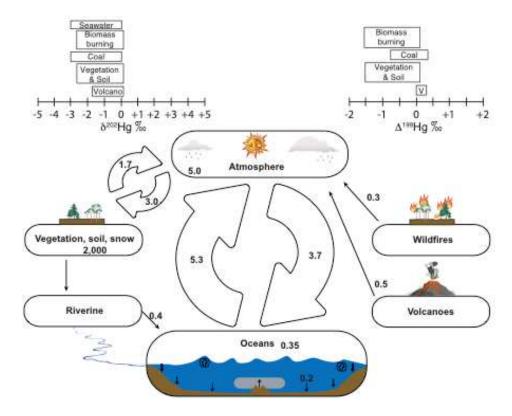
671 Figure 3. Mercury geochemistry of the Alberta sections that represent a basin transect.

Lithostratigraphy, chemostratigraphy, and ammonite biostratigraphy from Them et al. (2017a,
2018). Tenuicostat. = Tenuicostatum, carb. = carbonate. East Tributary represents proximal
location; core 1-35-62-5W6 represents intermediate location; core 6-32-75-20W5 represents
distal location. The proximal East Tributary section is the only section from our Panthalassan
study sites that displays an anomaly in Hg/TOC values.

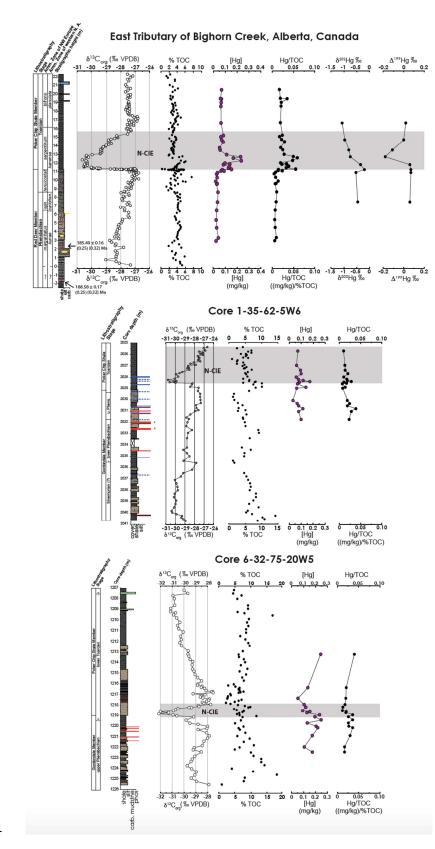
677

Figure 4. Mercury geochemistry of the Dotternhausen section. Lithostratigraphy, carbonisotope and TOC chemostratigraphy, and ammonite biostratigraphy from Dickson et al. (2017). Note that the one-point Hg/TOC anomaly during the N-CIE interval is associated with elevated pyrite contents (see discussion in Main Texas and Supplementary Information). Furthermore, the gray circles in the Hg/TOC portion of this section were not interpreted to represent Hg anomalies because their increases are caused by low TOC values.

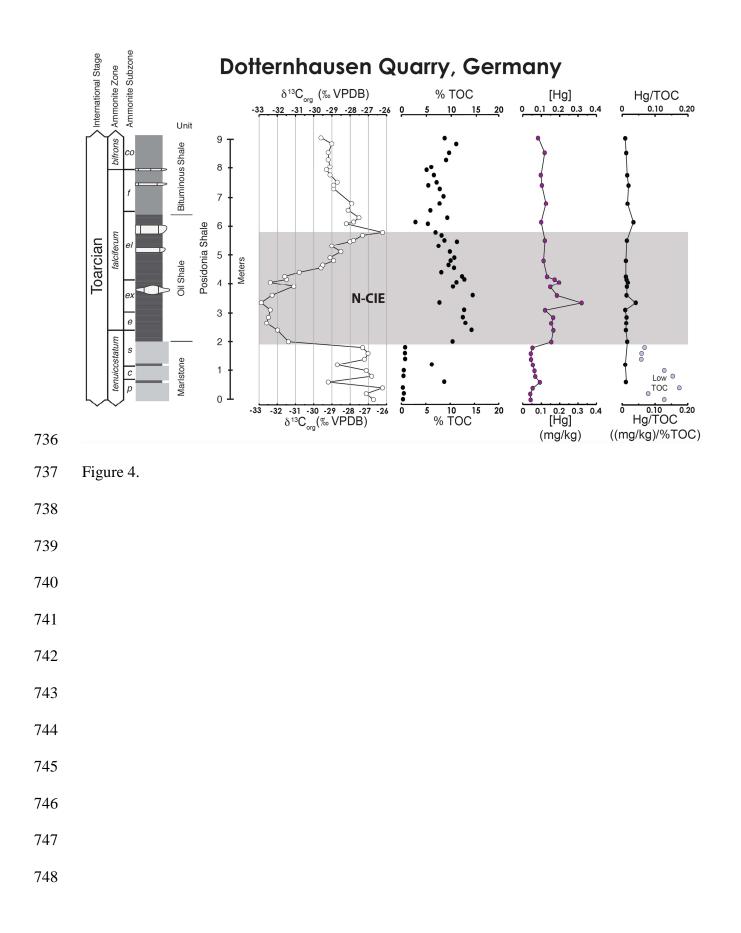

Figure 5. Compilation of sedimentary mercury geochemistry during the Pliensbachian and
Toarcian. Lithostratigraphy, carbon-isotope (either organic or inorganic) and Hg/TOC
chemostratigraphy across the Pliensbachian-Toarcian interval from Europe, South America, and
North America. Blue text represents sites where an Hg/TOC anomaly occurred during the TOAE interval. Red text represents sites where an Hg/TOC anomaly did not occur during the TOAE interval.

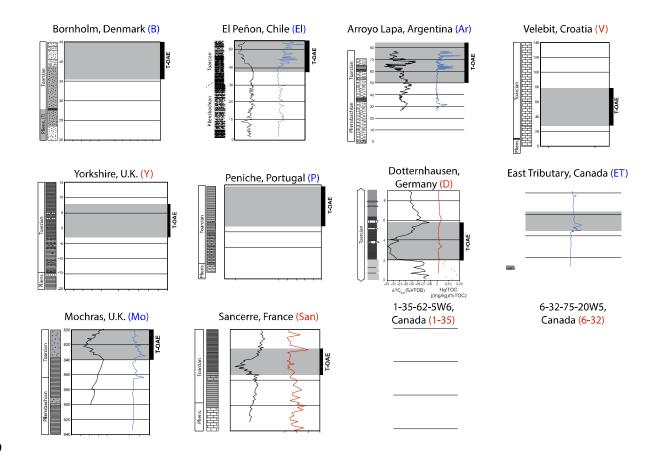

691

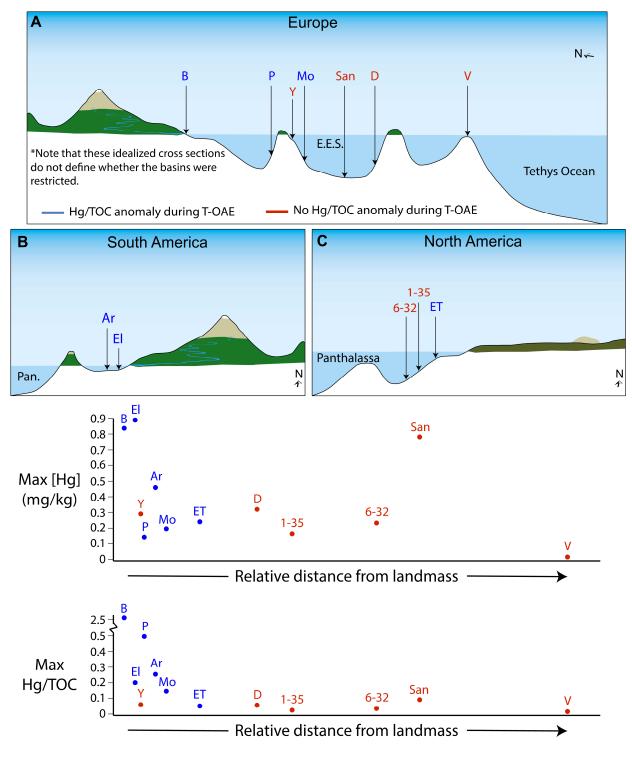
692 Figure 6. Idealized depositional settings of European, South American, and North

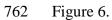

693 American locations during Pliensbachian and Toarcian. (A) In the European epeiric sea, 694 multiple semi-restricted to severely restricted basins and emergent landmasses existed. Note that 695 this is not one continuous cross-section, thus it is not depicting the local restriction of the basins 696 as they are connected to other sub-basins (**B**) The two South American locations were directly 697 adjacent to the Laurentian continent and the basins were isolated due to volcanic terranes. (C) 698 The North American locations were located in an upwelling zone with strong connections to 699 Panthalassa. The bottom panels depict the study sites with respective max [Hg] and Hg/TOC 700 values during the T-OAE N-CIE interval, as well as their relative distance from any landmasses, 701 small or large. Note that small changes in the relative distance of any study area will not 702 significantly influence the observations. Blue text represents sites where an Hg/TOC anomaly 703 occurred during the T-OAE interval. Red text represents sites where an Hg/TOC anomaly did not 704 occur during the T-OAE interval. A north arrow is shown in each panel. Pan. = Panthalassa, 705 E.E.S. = European epeiric seaway.

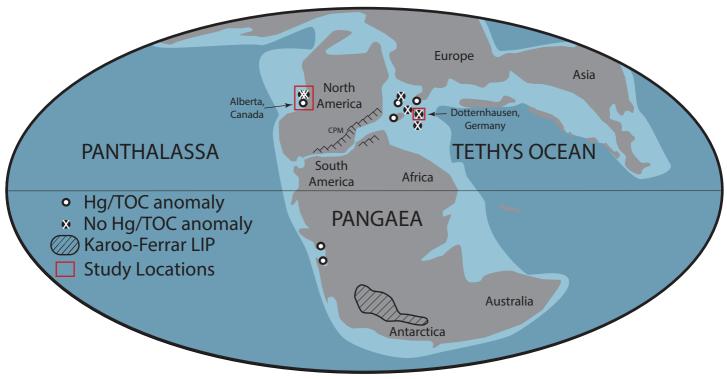
706

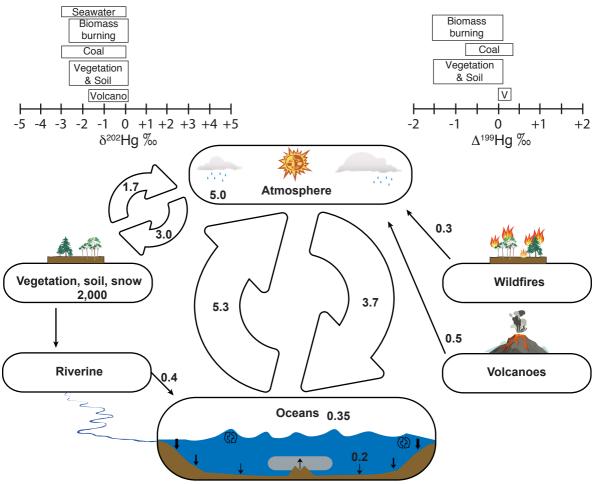


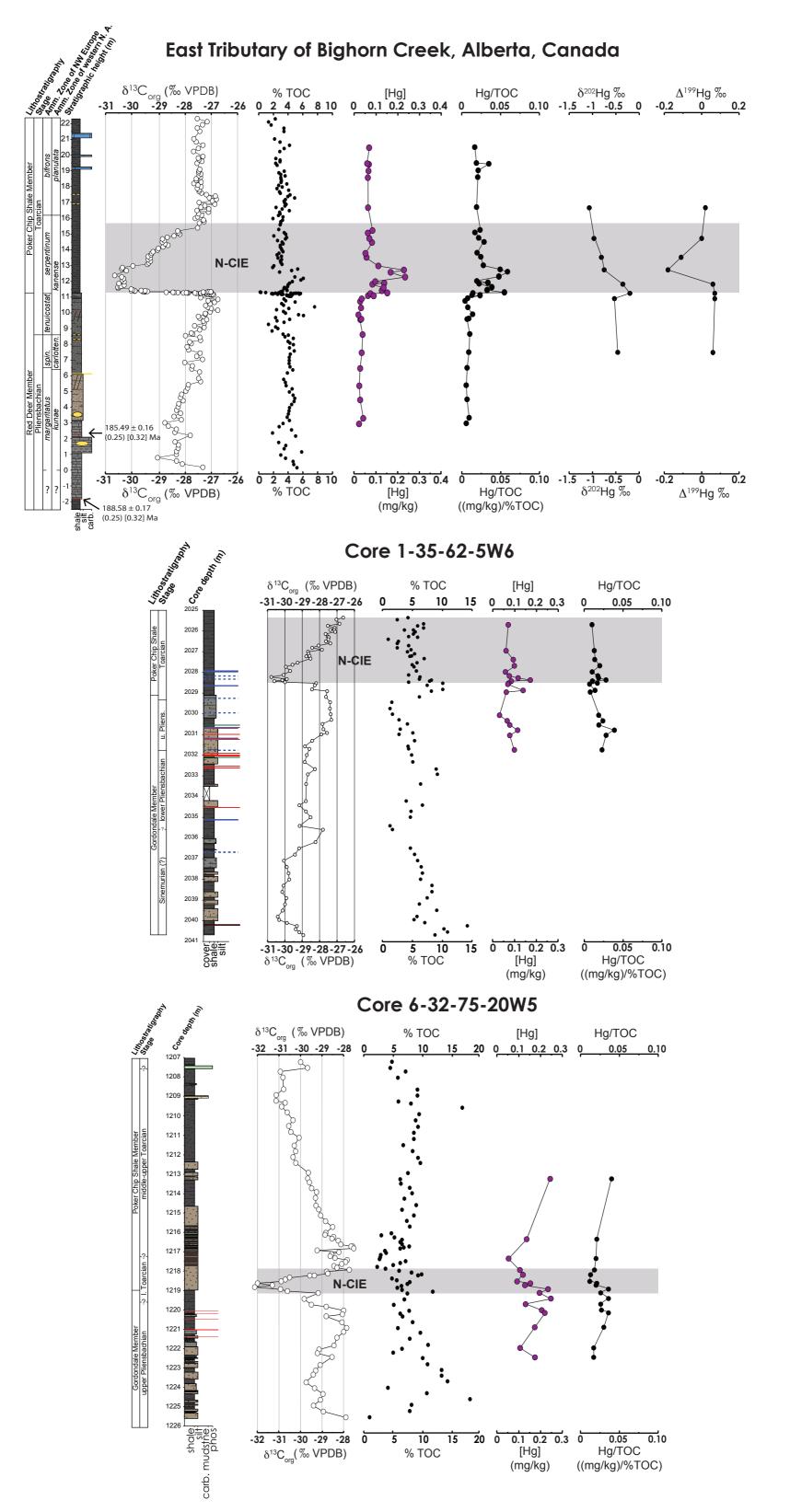

721 Figure 2.




735 Figure 3.






750 Figure 5.

